The fates of terrigenous organic carbon and absorbed atmospheric CO₂ in the East China Sea

K. K. Liu

Institute of Hydrological Sciences,

National Central University, Taiwan

Collaborators

G.-C. Gong, C.-R. Wu, H.-J. Lee

Coastal ocean: source or sink of atm-CO₂?

(Siegenthaler & Sarmiento)

North Sea: Continental Shelf pump

(Thomas et al., 2004)

The East China42 NSea-Yellow Sea-
Bohai Sea Shelf:39 N

- Area: 1x10⁶ km²
- Riverine discharge: ~900 Gmol C/a = 0.9 mol C/m²/a

Can it still take up CO₂? Yes, by 1-3 mol C/m²/a. How does it do it?

1-Box model (Chen & Wang, 1999)

Comparison of estimated residence time (τ)

	Qr(km 3/y)	Skuro	Sshelf	Qk(Sv)	Qs(Sv)	V(km3)	Tau(yr)
Nozaki et							
al. 1989					0.60	45000	2.38
Li (1994)	885	34.50	33.00	0.71	0.74	25000	1.09
Chen et al.,							
1996	1110	34.50	32.00	0.51	0.55	45000	2.71
Chen &							
Wang, 1997	1217	34.56	33.45	1.29	1.34	45000	1.07
Chen, 1998	1217	34.56	33.45	1.15	1.55	45000	0.92

Annual mean SST & SSS

Two-box model with transports

Summary-1

- From salt balance, we found the Kuroshio intrusion to the Yellow Sea to be 0.4 Sv and the northward flow from the southern shelf to be 0.78 Sv.
- From the volume transports, we obtained the residence time of 1.1-3.0 yr for the northern shelf and a mere 3-6 months for the southern shelf.

Summary-2

- The estimated input of atmospheric CO₂ reaches 1246 Gmol yr⁻¹, which is further amended with a huge riverine load of organic carbon (896 Gmol C yr⁻¹).
- The fates of the carbon input follow three pathways of roughly equal importance; 34% is buried in shelf sediments, 36% is exported as DOC and POC and the rest (30%) is exported as inorganic carbon.

Thank you!

Comparison with Chen & Wang (1999)

Study Processes	Chen & Wang (1999)	This study	
Input			
Air-sea	1820	1246	
Riverine OC	1000	896	
Riverine IC	3500		
Output			
Export of DOC	1199	593	
Export of POC	939	174	
Export of DIC	281	645	
Export of PIC	1852		
Burial of POC	600	730	
Burial of PIC	1460		

P_{CO2} in the ECS (Tsunogai et al., 1999)

0.48 Water budget based on salt $Area = 7.5 \times 10^5 \text{ km}^2$ balance & Ppt = 0.03, Evap=0.028observed-0.4 0.036 modeled 0.50.25transports 1.52 (Sv) 0.78**Residence time:** $Area = 2.0 \times 10^5 \text{ km}^2$ 0.003 Northern shelf Ppt=0.012, Evap=0.01 =1.1-3 yr 0.95 Southern shelf: = 3-6 months 18

Circulation in ECS and vicinity in summer (Lee & Chao, 2003, Wu, personal communicat., etc)

Circulation in ECS and vicinity in summer (Lee & Chao, 2003, Wu, personal communicat., etc)

130°E

120°E

Twobox model

SeaWiFS Chl in July

Ocean Carbon Budget (Tmol C/yr)

Ducklow & McCallister (2005) The Biogeochemistry of CO₂ in the Coastal Oceans, The Sea, V. 13, Ch 9.

24

Land-ocean flux a one-way traffic? Fate of terrigenous org-C, Fe, \dots_{25}^{25}

More P_{CO2} in the ECS

PP in the ECS (Gong et al., 2003)

