Response of Kane`ohe Bay, Hawai`i to Storm Runoff Input

C.W. Young, Y.J. Veillerobe, D.J. Hoover, R.D. Scheinberg, K.E. Fagan, <u>E. Heinen De Carlo</u>, and F.T. Mackenzie

University of Hawaii

- 1. Hawai`i is host to intense short duration rains on steep watersheds
 - 2. High runoff & erosion lead to extensive material transfer to the sea
 - 3. Our study is motivated by interest in response of coastal ocean to land inputs and concern about sensitive near-shore resources (\$\$)

Kane`ohe Bay

-Located on East or 'Windward' side of O`ahu, Hawai`i ←Largest Bay in Hawai`i (~13 km x 4 km) *Carge barrier reef, numerous patch reefs, multiple* (small) riverine inputs -South portion of bay has long water residence time Abundant previous work makes Kane`ohe an ideal
 Abundant previous work makes
 Abundant previous work makes
 Abundant previous work makes
 Abundant previous
 Abundant previous
 Abundant previous
 Abundant
 study site **Coral biology Characterized Scheme S** *Example 1* **(A) (A) (A)**

Objectives

Monitor receiving waters in "real time"

Femporally characterize physical and biogeochemical
 processes in bay

Quantify impact of storm inputs on bay productivity

←Test hypothesis that dissolved and particulate nutrients from storm pulses control nutrient budget of bay

 $\leftarrow Evaluate impact of storm pulses on exchange of CO_2 between bay and atmosphere$

Station Distribution

Storm plume boundaries in Southern Kaneohe Bay January 29, 2002

Measurements

- Chl-a, conductivity/salinity, DO, pH, T, turbidity
 Nutrients: (NO₃⁻ + NO₂⁻ and PO₄³⁻)
 Particle size distribution (32 size classes)
 Sediment fluxes (multiple traps)
- ←Waves, tides, currents

Depth profiles of water quality parameters
Collection of water samples for high sensitivity nutrient analysis (NO₃⁻, NO₂⁻, NH₄⁺, PO₄³⁻ and Si(OH)₄)

Collection of water samples for high precision measurement of carbonate system parameters

Variations in "Background"

11/29/2003 Storm

- First significant rain after very dry summer
 Two rain events in 8 days
 "Kona" storm evolution for 1st event
 Large input(s) of fresh
 - water and suspended solids to Kane`ohe Bay
- Strong changes in solar radiation

Salinity Profiles in South Central Bay

Low sal layer develops at surface due to northward propagation of freshwater plume on 11/30/03 **C**Lowest salinity surface layer noted on 12/1/03 Gradual dissipation of low sal layer over next 5 days -Water column fully mixed by 12/6/03 $\leftarrow 12/07/03$ storm has minor

effect on surface water salinity

 \leftarrow Stream discharge on 11/29 was 411,000 m³ Clearly delineated plume extended throughout a large portion of southern Kaneohe Bay *Concerned Stratified water column remained about* one week... mixed completely by 12/6/2003 ←Second smaller (295,000 m³) runoff event only slightly freshened bay surface waters ←Initial plume was maintained by light-variable winds during and after the storm. Trade winds subsequent to second storm resulted in rapid mixing of the plume/water column.

11/29/2003 Storm (discrete sample data)

Strong pulse of nutrients
Rapid phytoplankton response (chl-a)

- Rapid drawdown of (most) nutrients
- ←Sustained large increase in NH₄⁺ after storm...

Remineralization of OM delivered by storm?

Pigment Analysis, Phytoplankton Diversity

Changes in P_{CO2}

sites

Calcification in Kane`ohe

1. Calcification drives high P_{CO2}

2. Storm induced phytoplankton blooms draw down CO₂

3. Yet the bay remains an overall NET SOURCE

Conclusions

- Kane`ohe Bay is N limited (DIN:DIP normally ~2 to 4)
 DN initially added mostly as NO₃⁻
- 3. DIN:DIP (25) in storm runoff radically alters proportion of nutrients available for biological uptake
- 4. Post-bloom increases in nutrients in bay water not from increased stream base-flow or recycling of bloom POM
- 5. During other events "limiting" nutrient switched from N to P but not after 11/29/2003 storm when P > 0.3 μ M
- 6. The rise and persistence of high NH_3 for several months after the storm may sustain longer-term productivity
- 7. Bloom led to drawdown of CO_2 in bay, **temporarily** changing it from a net source of CO_2 to a net sink

More...

- 1. Increases in Chl-a and changes in community reflect evolving biological response stimulated by storm inputs
- 2. Strong phytoplankton response did not reduce nutrients to limiting levels \rightarrow increased zooplankton grazing?
- 3. Response of predators to increased grazer abundances prevented grazers from cropping phytoplankton to "background"
- 4. System stabilized quickly after initial bloom, with most of the new production grazed
- Small amount that escaped grazing pressure, however, led to slow/steady increase in the phytoplankton standing stock for several weeks

Acknowledgments

-<u>The French Connection</u>: Stephanie Ringuet, Mathieu Voluer, Yves Veillerobe, François Paqu Elodie Bonnaud (past/current students and technicians)

← <u>Funding</u>: NOAA Sea Grant College Program, National Science Foundation