

Interaction between Eutrophication and Suspended Matter Dynamics in a Shallow Coastal Sea - Developing Eutrophication Criteria -Justus van Beusekom¹

Alfred-Wegener-Institute for Polar and Marine Research Wadden Sea Station Sylt, List/Sylt, Germany

The LOICZ Perspective

- Land-Ocean-Interactions
 - Dams reduce riverine Suspended Matter Loads:
 - Increased erosion (river loads: +2.3 10⁹ T/y)
 - Decreased flux to the ocean (-1.4 10⁹ T/y)
 (Syvitsky et al., 2005)
 - Increased riverine nutrient fluxes
 (three times since 1970's; Smith et al. 2003)
 - Coastal zones are heterotrophic
 - Focus on riverine OM loads (Smith & Holibaugh, 1993; Thomas et al., 2005)
- Ocean-"Land" -Interactions

Overview

"...most of the suspended organic matter [in the Wadden Sea]...is in the form of organic detritus which forms aggregates with the inorganic particles... [that are] transported in a similar manner." Postma, 1981

- Suspended Matter Accumulation in the Wadden Sea
- Role of Particulate Organic Matter in the Eutrophication "History" of the Wadden Sea
- Long-Term SPM Dynamics in the Wadden Sea
 - Dutch Wadden Sea: The Inorganic View
 - Northern Wadden Sea: The Organic View

Source: Wadden Sea Quality Status Report 1999

Königshafen, Northern Wadden Sea Photo: Karsten Reise

Van Straaten & Kuenen, 1957

Suspended Matter Accumulation in the Wadden Sea: -the classical view-

• Verwey (1952):

High bivalve biomass explained by OM import from North Sea

Postma (1954); Van Straaten & Kuenen (1957):

- Inorganic (clay) particles: marine origin

SPM gradient towards coast implies active accumulation

- Scour-Lag
- Settling Lag
- Depth gradient
- Asymmetry of the tides

Van Straaten & Kuenen, 1957, Postma 1961

Accumulation along the North Sea Coast toward the Wadden Sea (Postma, 1981)

Driver: along-shore estuarine circulation

Suspended Matter Accumulation in the Wadden Sea: -the classical view-

Sediments viewed upon as being cohesive

- Accumulation from the North Sea
- Physical Factors
 - Scour Lag
 - Settling Lag
 - Asymmetry of the tide
- Biological Factors
 - Filter Feeders
 - Benthic Diatoms

Suspended Matter Accumulation in the Wadden Sea:

- the role of permeable sands -

Ripple formation

- leads to complex patterns of water inflow and outflow
- Filtering of particles
- Rapid transport of solutes in and out of these sediments

After Precht et al. 2004

Algae are transported deep into permeable sands

From Huettel & Rusch, 2000

Coarse sands filter faster

Much space between the sand grains

From Huettel & Rusch, 2000

Sandy Sediments accumulate fines during Summer (exposed tidal flat, Sylt)

Rusch et al, 2000

Filtration Rates in Wadden Sea Sands

- Permeable sands: ~100 l m⁻² day⁻¹
 e.g. de Beer *et al.* (2005); COSA Results
- Water is passed at least every 20 days through sediment
- Comparable to (Basin-averaged):
 - Filtration by Lugworms (Arenicola) ~100 l m⁻² day⁻¹
 - Filtration by Bivalves~ 200 l m⁻² day⁻¹

Suspended Matter Accumulation Summary

- SPM: inorganic and organic components
- Physical Factors
 - Settling Lag
 - Scour Lag
- Biological Factors
 - Filter Feeders
 - Benthic Diatoms
- Permeable Sediments as Filters

Role of Organic Matter in the Eutrophication "History" of the Wadden Sea

• Postma (1954):

- Estimated Particulate Organic Matter import from the North Sea:
 ~80 gC m⁻² y⁻¹
 based on PO₄ gradients between North Sea and Wadden Sea
- De Jonge & Postma (1974):
 - Compared PO₄ Dynamics between 1950 and 1970
 - Concluded a 3-fold increase of OM import to ~240 gC m⁻² y⁻¹

PO₄ cycle in the Wadden sea intensified by increased riverine P load

Carbon Budgets from the Wadden Sea ~1975-1995

Area	Production (g/m²•a)	Remineralisation (g/m²•a)	Nett. Import (g/m²•a)
W. Dutch Wadden Sea	298	450	152
Ems Estuary	210	280	80
Sylt Romo Basin	309	419	110

Adapted from van Beusekom et al., 1999

Temperate Tidal Estuaries are Heterotrophic

Import of Organic Matter Stimulates Productivity

after Heip et al., 1995

Role of Organic Matter in the Eutrophication "History" of the Wadden Sea - Summary-

- Wadden Sea is heterotrophic
- Source: North Sea
- Increased Import since ~1950's
- At present about 100 gC m⁻² y⁻¹ are imported

Long-Term SPM Dynamics in the Wadden Sea: Interannual Organic Import Variations? Carbon budgets are tedious

- How to document changes in Import?
- How to detect any regional differences?

Seasonal Cycle of Nutrients as Indicator of Changes in the Intensity of the Annual Carbon Cycle Changes in the Seasonal Cycle of Nitrogen $(NH_4 + NO_2 \text{ levels in autumn})$

Van Beusekom, unpublished

Catchment area

Wadden Sea catchment area

Rhine catchment area

Source: Wadden Sea Quality Status Report 1999

Conceptual Model

Trends in River input: Discharge

Changes in the seasonal cycle of nitrogen $(NH_4 + NO_2 \text{ levels in autumn})$

Multiple regression analysis

- dependent:
 - Autumn $NH_4 + NO_2$
- independent:
 - Riverine input (Rhine Meuse; Dec-Aug)
 - Chlorophyll (Sep Nov)
 - Temperature (Sep Nov)

Changes in the seasonal cycle of nitrogen $(NH_4 + NO_2 \text{ levels in autumn})$

- Significant effect of Rhine/Meuse in the Southern Wadden Sea
 - Western Dutch Wadden Sea
 - Eastern Dutch Wadden Sea
 - Norderney
- No significant relations in the Northern Wadden Sea

Changes in the seasonal cycle of nitrogen $(NH_4 + NO_2 \text{ levels in autumn})$ Western Dutch Wadden Sea

No Spatial Trends in Winter NOx (µM) (salinity-normalized)

Spatial Trends in Autumn $NH_4 + NO_2 (\mu M)$

Long-Term SPM Dynamics in the Wadden Sea: Interannual Organic Matter Import Variations?

Riverine TN input

- Interannual TN Variability related to discharge
- Long-term decrease (de-eutrophication)
- Response of the Seasonal Nitrogen Dynamics
- NH₄ + NO₂ in autumn are good indicators of OM turnover
- Northern Wadden Sea less eutrophic than the Southern part
- Compared to historic estimates: five-fold increase in OM Dynamics

Long-Term SPM Dynamics: The Dutch North Sea Coast

Long-Term SPM Dynamics: The Dutch North Sea Coast

MUD BALANCE BELGIAN-DUTCH COASTAL WATERS

19699.7 106 Tonnes y-11970-19808.8 106 Tonnes y-11980-198610.1 106 Tonnes y-119866.8 106 Tonnes y-1

Van Alphen, 1990

Long-Term SPM Dynamics: Wind? Dutch North Sea Coast

Hours with Wind Speed > 14 m/s

Wind Speed (resuspension) in Winter (quarter 4 and 1):

- Related to the mean SPM amounts off the Dutch Coast
- Related to the amount of dredging in the Rhine/Meuse Estuary

Van Alphen, 1990

Long-Term SPM Dynamics: Dredging? Western Dutch Wadden Sea

Long-Term SPM Dynamics in the Wadden Sea: Dredging? Mean suspended matter

- **Ems Estuary**
 - Increased tidal range (from 3.0 – 3.3 m)
 - SPM Increase since 1954

Long-Term SPM Dynamics Dutch Wadden Sea and North Sea Coast - Conclusions -

Present Wadden Sea Values:

- ~2 3 Times higher than ~50 years ago
- Large Interannual Variability
 - Wind?
 - Dredging?
 - Other Factors?

SPM Dynamics in the Northern Wadden Sea

Map: www.waddensea-secretariat.org

Points to be addressed

- Seasonality
- Focus on winter
- Shallow Station:
 - Advection from Deep St
 - Wind
- Deep Station
 - Lag effect of Wind (Resuspension at the fringes)
- Interannual differences
 - Wind
 - Import of organic matter (and associated fines)

List Tidal Basin

Bayerle et al. 1998

Seasonality of Wind and Suspended Matter

Wind Speed:
 Summer ~ 20% lower

Suspended Matter
 Summer ~ 80% lower

Van Beusekom et al., in prep

Seasonality of Wind and Suspended Matter

Mean wind speed (m/s) 0-12 hours before sampling Van Beusekom et al., in prep

Advection from the Main Channel and Wind influence SPM at the Shallow Station

Linear Regression:
 – SPM at Deep Station
 R² = 0.50; N=75; p <<0.0001

- Multiple regression:
 - SPM at Deep Station
 - Wind speed
 (12 hr before sampling
 R²=0.62; N=75; p <<0.0001

The Deep Station Responds Slow to Resuspension "events"

Van Beusekom et al., in prep

The Deep Station Responds Slow to Resuspension "events"

Van Beusekom et al., in prep

Mean Wind Speed influences SPM, but interdecadal differences remain unexplained

1980's:

- Higher Nutrient Loads into the North Sea
- Higher Prim. Prod.
 in the North Sea
- Larger OM Import into the Wadden Sea
- Larger Import of Fines into the Wadden Sea

Relating Winter SPM with Riverine Nutrient (Total Nitrogen) Input (averaged over three previous years) and Wind Speed

 $SM_{2005} = Cons. + A*W_0*RTN_{3-1} - B*W_1*RTN_{2-1}$

Van Beusekom et al., in prep

Time-Series of Modeled and Measured Winter SPM (significant correlated: R²=0.75^{*})

Van Beusekom et al., in prep

SPM Dynamics in the Northern Wadden Sea

- SPM Seasonality, Biology Rules utlook -
- SPM Dynamics in Winter in Sandy Coastal Basins
 - Wind-induced immediate local resuspension
 - Advection of resuspended matter from the inner area (Lag Effects)
- Interannual differences
 - Wind (mean winter wind speeds)
 - Riverine Nutrient (Total Nitrogen) Input (Nutrients enhance off-shore productivity, leading to enhanced accumulation of fines in the Wadden Sea)
- Consequences of Eutrophication
 - Clogging of sediments -> Remineralisation Shift to Pelagic
 - Worse light conditions -> Primary Production Shift to Pelagic

General Conclusions

- SPM-Dynamics: Essential for Coastal Biogeochemistry but difficult to grasp
- Sandy Sediments: Global Role Underestimated?

• Time Series:

Essential for Identifying Responses to Management

Acknowledgements

- Rijkswaterstaat, TMAP Data Units for making available the necessary data
- CoSa Partners
- EU for funding support under the FP 5 EESD programme
- LOICZ for the kind invitation