

A NEW ASSESSMENT OF COASTAL VULNERABILITY TO CLIMATE CHANGE:

DINAS-COAST and the model **DIVA**

Richard Klein, Potsdam Institute for Climate Impact Research

- Rationale and objectives of DINAS-COAST
- Components of DIVA
- Preliminary results
- Conclusions and future work

Scenarios of Sea-Level Rise

IPCC Third Assessment Report (2001)

LOICZ Expectations

DINAS-COAST addresses two of the seven GAIM questions that are

relevant to LOICZ:

- Question 7: Which are the most vulnerable coastal regions under global change? (LOICZ expectation: a typology of coastal vulnerability to global change on various spatial and temporal scales)
- Question 14: What are the most appropriate methods for integrating natural and social scientific knowledge? (LOICZ expectation: successful integration of natural and social sciences to overcome the traditional disciplinary divide)

LOICZ II Science Plan and Implementation Strategy (2005)

The Rationale for DINAS-COAST

One of the most widely cited reports on coastal vulnerability to climate change is the Global Vulnerability Assessment from 1993.

However, its limitations have become increasingly apparent:

- The obsolescence and low spatial resolution of underlying data sources
- The reliance on global mean sea-level rise as the only driver of coastal vulnerability
- The non-consideration of biogeophysical and socio-economic dynamics and feedback
- Arbitrary and rather simplistic assumptions regarding adaptation.

DINAS-COAST Objective

Building on methods and expertise developed in a range of disciplines, the objective of DINAS-COAST has been to develop a dynamic, interactive and flexible CD-ROM-based tool that enables its users to produce quantitative information:

- On a range of coastal vulnerability indicators
- For user-selected climatic and socio-economic scenarios and adaptation policies
- On national, regional and global scales, covering all coastal nations

This tool is called DIVA: Dynamic and Interactive Vulnerability Assessment

Components of DIVA

DIVA comprises four main components:

- A detailed global database with biophysical and socio-economic coastal data
- Global and regionalised sea-level and socio-economic scenarios until the year 2500
- An integrated model, consisting of interacting modules that assess biophysical and socio-economic impacts and the potential effects and costs of adaptation
- A graphical user interface for selecting data and scenarios, running model simulations and analysing the results.

Modules in DIVA

The following modules have been developed:

- Relative sea-level rise
- River effect
- Indirect erosion
- Total erosion
- Wetland change
- Flooding
- Wetland valuation
- Tourism
- World heritage sites
- Costing and adaptation

LOICZ II Inaugural Open Science Meeting, Egmond aan Zee, Netherlands, 27–29 June 2005 8

Adaptation in DIVA

For each time step the model selects an adaptation option according to the following adaptation strategies:

- No adaptation: the model only computes potential impacts
- Full protection: raise dikes or nourish beaches as much as is necessary to preserve the status quo
- Optimal protection: optimisation based on the comparison of monetary costs and benefits of adaptation options and potential impacts
- User-defined protection: the user sets a protection standard by defining a return period against which to protect

DIVA Flooding

1-m rise by 2100 and A1 world

DIVA Flooding

1-m rise by 2100 and A1 world

People Actually Flooded by GVA Region in 2000

People Actually Flooded by SRES Region in 2000

People Actually Flooded by Country in 2000

People Actually Flooded by Administrative Unit in 2000

People Actually Flooded by Administrative Unit in 2000

People Actually Flooded by Administrative Unit in 2000

Preliminary Findings

- A multitude of different analyses are possible
- Present exposure to coastal flooding by surges is higher than earlier estimates
- Flood impacts under cost-benefit selection of adaptation are predicted to be much lower
- Wetland losses appear comparable to earlier estimates
- Analysis of results will continue by the DINAS-COAST consortium and others

Potential Users of DIVA

Two types of users are envisaged:

- Academic users: IPCC, IGBP/IHDP LOICZ, integrated assessment, the broader academic community
- Policy-related users: Parties and observers to the UNFCCC, international organisations

Potential Users of DIVA

What about coastal planners and managers?

- The scale and resolution required for coastal decision-making are not offered by DIVA
- DIVA can at most be informative to local planning and management; it cannot evaluate strategies on the local scale
- DIVA can be used as an educational tool to create awareness of the relevance of climate change to coastal management: a discussion-support tool

Conclusions

DINAS-COAST has been innovative both in terms of its methodology and its deliverables:

- A reiterative, distributed, internet-supported model development process
- A unique coastline segmentation approach to define the basic unit of analysis
- Explicit consideration of adaptation, which influences impacts in the next time step
- Integration of modules representing natural and socio-economic knowledge relevant to coastal vulnerability
- The final product is the published model, not only the results

Future Work

Having (almost) completed DIVA 1.0, a range of opportunities have been identified for future work:

- Application of DIVA 1.0
- Development of training package
- Enhance DINAS-COAST website functionality
- Contribute to integrated assessment model
- DIVA Europe, including some new modules
- Other regions?

Other DINAS-COAST Presentations

A number of issues related to DINAS-COAST and DIVA will be discussed in detail at this conference:

- <u>Gerben Boot:</u> Coastal erosion and sea-level rise at the global scale: an assessment of impacts and adaptation, Session 1, Day 1, 11:30.
- <u>Jochen Hinkel:</u> Methodological issues in coastal vulnerability assessment. Keynote address, Workshop 1, Day 1, 14:00.
- Loraine McFadden: A new model of wetland loss and sea-level rise.
 Session 19, Day 1, 15:15.
- <u>Nassos Vafeidis:</u> Data requirements for global-scale coastal vulnerability analysis and the DINAS-COAST database. Session 18, Day 3, 11:30.
- <u>Poul Grashoff:</u> A demonstration of the DIVA tool for assessing coastal vulnerability. Session 18, Day 3, 12:15.

This Session

A number of presentations in this session address topics not yet considered in DIVA:

- Gerben Boot: Coastal erosion and sea-level rise at the global scale: an assessment of impacts and adaptation
- <u>Lindy Dingerson:</u> Predicting future shoreline condition based on landuse change and increased risk associated with climate change
- Barbaro Moya: Hicacos peninsula, a coastal territory with urban and non-urban space facing future changes
- <u>Frank Thomalla:</u> Understanding human vulnerability to coastal hazards and adapting to uncertain futures
- Susanne Rupp-Armstrong: The future of managed realignment in Northern Europe: a comparative study of southern North Sea coastal areas

